Introduction
To
Clustering



Clustering

Considered to be the most important technique of unsupervised learning.

A cluster is a collection of data objects which are

* similar to one another within the same group (class or category)
 different from the objects in the other clusters.

Clustering is
* an unsupervised learning technique

e predefined classes and prior information which defines how the data should be labelled
into separate classes

Uses

 to discover hidden patterns of interest or structure in data
* sometimes as a pre-processing step in other algorithms




Why Cluster

Clustering allows us to find hidden relationship between the data points
in the dataset.

Examples:

* In marketing, customers are segmented according to similarities to carry out
targeted marketing.

* Given a collection of text, we need to organize them, according to the content
similarities to create a topic hierarchy

* Detecting distinct kinds of pattern in image data (Image processing). It’s
effective in biology research for identifying the underlying patterns.




Classification vs Clustering

Classification

* In Supervised learning a model learns a method for predicting the instance class from a pre-
labelled (classified) instances.

Clustering

* In unsupervised learning a model tries to find “natural” grouping of instances for a given
unlabelled data.

O
° " ;
® O = P
® = ®

Clustering




How to define Clustering Algorithms

Clusters are created by
* reducing the distance between objects in the same cluster — intra-cluster minimization
* increasing the distance between objects in other clusters — inter-cluster maximization

Intra-cluster minimization
The closer the objects in a cluster, the more
likely they belong to the same cluster.

Inter-cluster Maximization

This makes the separation between two
clusters. The main goal is to maximize the
distance between 2 clusters.

Clustering




Types of Algorithm

Hierarchical

each other.
e.g.: K-means

Many types of algorithm, using different techniques
Hierarchical Clustering algorithm

Flat or partitioning algorithm
@26
Yop 62
I'i}\h
L .ﬂ '!
~a
Does not partition

Tries to divide the dataset of interest into
predefined number of groups/ clusters.

Multiple steps which run from a single cluster containing all the data points to n clusters
containing single data point.

All groups/ clusters are independent of
This algorithm is further classified into Divisive and Agglomerative Methods.

Clustering




K-means Clustering



K-means

Before K-means

Can work with multi-dimensional data.

K-means

After K-means




K-means

Can work with multi-dimensional data.

K-Means algorithm
1 — select number (k) of clusters
2 — Select at random K points (centroids)
Not necessarily from the dataset

3 — Assign each datapoint to the closest centroid
Form K-clusters

4 — Compute and place the new centroid of each cluster

5 — Reassign each datapoint to the new closest centroid
If any reassignment took place, go to step 4, otherwise the model is ready.




K-Means —Step 1

Step 1

Choose the number K of clusters

egK=2




K-Means — Step 2

v

Step 2
Select at random K points (centroids)

Not necessarily from your dataset




K-Means — Step 3

v

Step 3
Assign each datapoint to the closest centroid

Form K-clusters




K-Means — Step 3

Step 3

Assign each datapoint to the closest centroid

Form K-clusters

v




K-Means — Step 4

v

Step 4

Compute and place the new centroid of each cluster




K-Means — Step 4

v

Step 4

Compute and place the new centroid of each cluster




K-Means — Step 5

v

Step 5

Reassign each datapoint to the new closest centroid

If any reassignment took place, go to step 4, otherwise finish




Before K-Means

v

After K-Means

v




Random Initialization Trap

iy
oi‘\.

Scenario 1
You manually choose initial centroids

Based on your intuition




Random Initialization Trap

Scenario 1

K-means might cluster as follows




Random Initialization Trap

]
e® S

Scenario 2
You randomly choose initial centroids

Based on your intuition




Random Initialization Trap

]
e® S




Random Initialization Trap

]
e® S




Random Initialization Trap

e® S
o




Random Initialization Trap

e® S
o




Random Initialization Trap

@ Scenario 2
Model converges with a False Result
Due to poor initial choice of centroids




Random Initialization Trap

Scenario 1 - Original

Model converges with a True Result

Due to good initial choice of centroids

K-means++ algorithm will fix this
Complicated & beyond this course
Most ML libraries have it as a hyper parameter

v

Happens in the background




Choosing the Right number of Clusters

O : o0 ©®
0..
%’ o"$
®




Choosing the Right number of Clusters

»
»

Is 3 the correct number of clusters
Why not 2 clusters ?
Why not 4 clusters ?

Calculate WCSS

WCSS =2 ... o distance(P,, C,)?+ X . ... c, distance(P,, C,)2+ > .. ... , distance(P,, C,)?




Choosing the Right number of Clusters

For 1 Cluster
Lots of points in the dataset

WCSS usually large

WCSS = 2. .., ¢; distance(P,, C,)?




/Chgosing the@ght number of Clusters

For 2 Clusters
Fewer points in each dataset

WCSS smaller than

WCSS = ... o distance(P,, C,)>+ 2 5., , distance(P, C,)?




Choosing the Right number of Clusters

For 3 Clusters

Smaller again

WCSS =2 ... o, distance(P,, C,)?+ X . .. o, distance(P,, C,)2+ > ,. . ., distance(P,, C,)?




Choosing the Right number of Clusters

How many clusters are possible?

Ans — As many points / elements in the dataset
Each point is its own cluster

In the limit, WCSS equals ZERO
W(CSS decreases as number of clusters increase

Use “elbow” method —
Trial and error
Scientists judgement

70000

60000

50000

40000

30000

20000

10000

WCSS

10







ARTIFICAL NERURAL
NETWORKS




A.N.N. - Introduction

Human brain learns by creating connections among these neurons.

ANNs are information processing models inspired by the human brain.

X1

X2e

X3

The brain has over 100 billion neurons communicating through electrical and chemical signals.

Neurons communicate with each other and help us see, think, and generate ideas.

Layer 1 Layer 2 Layer k

01 - Regression




How to humans learn ?

Humans learn from experience (by example)

~Desired Outputs LABEL: CAT!
\ Deviated Outputs

Desired (Correct) Output

01 - Regression




Neuron Mathematical Model

The neuron collects signals from input channels named dendrites, processes information in its nucleus,
and then generates an output in a long thin branch called axon.

A
4 i
/ !
Lo /
|
8 S
i /
I" y
-y v
a e /
S | e cosTa e
@ = N\, - o
~ = ‘
- i /
e >

DENDRITES

NUCLEAS

01 - Regression




Neuron Mathematical Model

Bias allows to shift the activation function curve up or down.

Number of adjustable parameters = 4 (3 weights and 1 bias).

Activation function “F”. Q b

INPUTS/INDEPENDENT
VARIABLES

y = f(XiWy + Xo W, + XsW3 + b)

01 - Regression




Single Neuron Model

Assume that the activation function is a Unit Step Activation Function. Unfesrar (threshald}

3

The activation functions is used to map the input between (0, 1).

Q =07 hb=0 f(x)={0if0>x

1

Input #1=1

—@-

y = f(X, W + X, W, + X3W;5 + b)
y=f(1%074+3%0.14+4%0.3)=/f(2.2)

' 1if x=0
Input #2=3 Q ' .

Input #3=4

y = 1 (because 2.2 > 0)

01 - Regression




Single Neuron Model

Try a neural network out : https://playground.tensorflow.org

O Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
000‘507 0.03 - Linear - None - 0 - Classification -

DATA FEATURES + — 0 HIDDEN LAYERS OUTPUT

Which dataset do Which properties do Test loss 0.000
you want to use? you want to feed in? Training loss 0.000

Ratio of training to

test data: 50%

—e

Noise: 0
®

Batch size: 10
—e
REGENERATE

-

1 0 1

[] Showtestdata [] Discretize output

01 - Regression




TRAINING A NETWORK




Back Propagation

A method used to train ANNs by calculating gradient needed to update network weights.

STEP 1:
FORWARD PROPAGATION

2

inputs

STEP 4:
WEIGHT
UPDATE

Often used by the gradient
descent optimization algorithm to
adjust the weight of neurons by
calculating the gradient of the
loss function.

input layer hidden layer

e

STEP 3:

BACK PROPAGATION

outputs

STEP 2:
ERROR
CALCULATION

®—

output layer

01 - Regression




Back Propagation - Phase 1 - Propagation

1. Propagation forward

through the network to STEP 1-
generate the output value(s) FORWARD PROPAGATION
2. Calculation of the cost (error — —
term ERROR
) inputs OUTPUTS | CALCULATION
: STEP 4:
3. Propagation of output WEIGHT ’4_

activations back through UPDATE
network using training
pattern target in order to

generate the deltas input layer hidden layer output layer
(difference between —
targeted and actual output STEP 3:
values) BACK PROPAGATION

01 - Regression




Back Propagation - Phase 2 - Weight Update

1. Calculate weight gradient

STEP 1:
2. Aratio (percentage) of the FORWARD PROPAGATION
weight's gradient Is —
subtracted from the weight. STEP 2:
: outputs ERROR
3. This ratio influences the Inputs CALCULATION
speed and quality of WEITGE:T4: ’4_
learning and called learning UPDATE

rate. The greater the ratio,
the faster neuron train, but
lower ratio, more accurate

input layer hidden layer output layer

the training is. —

STEP 3:
BACK PROPAGATION

01 - Regression




MULTI NEURON MODEL




2 Neurons

The network is represented by a matrix of weights, inputs and outputs.

Total Number of adjustable parameters = 8: p1 {'
Weights = 6 w2 ol al
Bigses = 2 Matrix Representation
P
P=|P,
P, AW L+ > a
W21 W22 W23
) -
b=
b, a2
a= f(WXP+b) —

a2 = f(BW, + P,W, + PW, +b2)

01 - Regression




Neuron Network - Matrices

A

P

P=| °

P,

Wll W12

W21 W22
Wm—l,l Wm—1,2
| Wi Win 2

Ny
X = 0wl (D)
j=1

Node (n+1, i) representation

W -

1Ny Non-Linear Sigmoid Activation function
W. 1

2,Nq

w) =
: o) 1+e™v
Wm— 1 N1

W'rrl"l\]1

m: number of neurons in the hidden layer

Ni: number of inputs

01 - Regression




Questions

01 - Regression




